Anti-Inflammatory Activity of the Solvent-Partitioned Fractions from Spergularia marina in LPS-Stimulated RAW 264.7 Cells
نویسنده
چکیده
As a part of ongoing research to elucidate and characterize antioxidant and anti-inflammatory nutraceuticals, solvent-partitioned fractions from Spergularia marina were tested for their ability to scavenge radicals and suppress inflammation. The results of the 2',7'-dichlorofluorescein diacetate assay indicate that solvent-partitioned fractions from S. marina scavenged intracellular radicals in H2O2-stimulated mouse macrophages. The tested fractions decreased the generation of nitric oxide (NO) and the expression of inflammation mediators, namely, inducible nitric oxide synthase (iNOS) and interleukin (IL)-6, by lipopolysaccharide (LPS)-induced mouse macrophages, indicating that S. marina decreases inflammation. Among all tested fractions [i.e., H2O, n-buthanol (n-BuOH), 85% aqueous methanol (aq. MeOH), and n-hexane], the 85% aq. MeOH fraction showed the strongest antioxidant and anti-inflammatory response. The 85% aq. MeOH fraction scavenged 80% of the free radicals produced by H2O2-induced control cells. In addition, NO production was 98% lower in 85% aq. MeOH fraction-treated cells compared to LPS-induced control cells. The mRNA expression of iNOS and IL-6 was also suppressed in 85% aq. MeOH fraction-treated cells. The results of the current study suggest that the phenolic compound components of S. marina are responsible for its antioxidant and anti-inflammatory effects.
منابع مشابه
Antioxidant and Anti-inflammatory Activities of Broccoli Florets in LPS-stimulated RAW 264.7 Cells
Broccoli (Brassica oleracea var. italia) florets were extracted with 80% methanol and the extract was sequentially fractionated with n-hexane, ethyl acetate, n-butanol, and distilled water. The extract and the fractions were evaluated for total phenolic content, sulforaphane content, antioxidant activity, and anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The...
متن کاملThiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages
The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...
متن کاملThiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages
The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...
متن کاملInhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts.
OBJECTIVE The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. METHODS Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentration...
متن کاملAnti-inflammatory Effect of Oyster Shell Extract in LPS-stimulated Raw 264.7 Cells
This study was designed to investigate the anti-inflammatory effect of oyster shell extract on the production of pro-inflammatory factors [NO, reactive oxygen species (ROS), nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2)] and pro-inflammatory cytokines [Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and TNF-α] in the lipopolysaccharide (LPS)-sti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2014